Light naphtha alkanes from (ligno)cellulose: A chemocatalytic approach

A. Deneyer, M. Dusselier, T. Ennaert & B.F. Sels

aron.deneyer@kuleuven.be
Centre for Surface Chemistry and Catalysis (COK), KU Leuven Belgium
General introduction

Petrorefinery

Biorefinery

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Perspective for bio-based alkanes

2020

2050

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Chemocatalytic tool box

Heavy products e.g. Lubricants

Fatty acid (Glycerides)

Diesel

Kerosene

Gasoline

Light naphtha

Monomer - Dimer (Lignin)

C_{5-6} Sugar ((Hemi)cellulose)

TOOL BOX
- Hydrogenation
- Oxygen removal
- Cracking
- Coupling
- Branching

Heavy products e.g. Lubricants

Diesel

Kerosene

Gasoline

Light naphtha

Fatty acid (Glycerides)

Monomer - Dimer (Lignin)

C_{5-6} Sugar ((Hemi)cellulose)

Deneyer et al., Current Opinion in Chemical Biology, 2015

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Hydrodeoxygenation of cellulose

Op de Beeck et al., Energy and Environmental Science, 2015

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Properties of cellulose

- **Crystallinity** (CrI\%) (XRD)
- **Particle size** (\(\mu\)m) (LD, SEM)
- **Degree of polymerization** (# units) (Viscosity)
Particle size (µm)

Sieving: < 125 µm

67 mol% C

Sieving: > 125 µm

70 mol% C

62 mol% C

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Particle size (µm)

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Introduction – One pot hydrodeoxygenation – **Influence of the substrate** – C&H neutrality – Conclusion
Comparison with fast-hydropyrolysis

H₂Bioil

Mild catalytic

≈ 0.05 g H₂/g feed

* Venkatakrishnan et al., Green Chemistry, 2015
100% renewable Carbon and Hydrogen

Introduction – One pot hydrodeoxygenation – Influence of the substrate – C&H neutrality – Conclusion
Toward real (ligno)cellulosic feedstocks

Whatman filter 4

α-cellulose

Wheat straw organosolv

Yield = big cellulose spheres

70 mol% C
Toward real (ligno)cellulosic feedstocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Whatman filter 4</td>
<td>100</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>49</td>
<td>9</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>α-cellulose</td>
<td>83</td>
<td>17</td>
<td>/</td>
<td>/</td>
<td>48</td>
<td>8</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Wheat straw org.</td>
<td>70</td>
<td>8</td>
<td>16</td>
<td>6</td>
<td>45</td>
<td>12</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Wheat straw org. bleached</td>
<td>74</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>42</td>
<td>8</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

- Cellulose \rightarrow C₆ alkanes = Efficiency
- Hemicellulose & Lignin Degradation
Mildly refined, large and fibrous raw cellulose

One-pot hydrodeoxygenation of cellulose

\Rightarrow 100% renewable C & H

Light naphtha

Perspective for bio-based alkanes

Conclusion
Thanks to …

- Thijs Ennaert
- Dr. Michiel Dusselier
- Prof. Dr. Bert F. Sels
- The ‘biomass group’ colleagues
- Technical staff @ COK

Contact or more information: aron.deneyer@kuleuven.be